Notes on using GPUs for specific purposes

Research

Choosing a GPU for deep learning

TL;DR

Objectives

Best GPU articles and ratings

GPU Decision-making flowchart

decision flowchart

Running and testing

eGPU as a part of a homelab computing setup from running and testing an eGPU on my home hardware

Installing NVidia container toolkit

From GitHub Issue 72:
Basically, the install from earlier versions of Ubuntu should work.

we generally only publish packages for LTS releases. With that said, the Ubuntu18.04 repositories can be used for all newer Ubuntu distributions (and are already used for the 20.04 and 22.04 packages).

This means following the standard instructions here, but explicitly setting distribution=ubuntu18.04:

distribution=ubuntu18.04 \
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

Using a GPU with Docker

In order to have docker containers leverage an Nvidia GPU, nvidia-container-toolkit must be installed

Installation

Handy Server World install guide

root@dlp:~# curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | apt-key add -
OK
root@dlp:~# curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu22.04/nvidia-docker.list > /etc/apt/sources.list.d/nvidia-docker.list
root@dlp:~# apt update
root@dlp:~# apt -y install nvidia-container-toolkit
root@dlp:~# systemctl restart docker

Test/validate that it’s working

Fire up a CUDA-enabled image and have it run the nvidia-smi tool: docker run --gpus all nvidia/cuda:11.5.2-base-ubuntu20.04 nvidia-smi